Hằng đẳng thức a^3 + b^3, a^3 - b^3 (a mũ 3 cộng trừ b mũ 3) đầy đủ

admin

"Ngoài 7 hằng đẳng thức lưu niệm thông thườn rời khỏi thì còn tồn tại một số trong những hằng đẳng thức không giống. Hãy tìm hiểu thêm nội dung bài viết tiếp sau đây nhằm làm rõ rộng lớn về đẳng thức lập phương  a 3 b 3 (a nón 3 nằm trong trừ b nón 3) nhé!”

Hằng đẳng thức a^3 + b^3 (a nón 3 nằm trong b nón 3)

A3 + B3 = ( A + B )( A2 – AB + B2 )

A3 – B3 = ( A – B )( A2 + AB + B2 )

  • Lập phương của một tổng vày lập phương của biểu thức loại nhất nằm trong 3 chuyến tích của bình phương biểu thức loại nhất và biểu thức loại nhị nằm trong 3 chuyến tích biểu thức loại nhất và bình phương biểu thức loại nhị rồi cùng theo với lập phương của biểu thức loại nhị.

 Ví dụ:

a) Tính 33+ 43.

b) Viết biểu thức ( x + 1 )( x2- x + 1 ) bên dưới dạng tổng nhị lập phương.

Lời giải:

a) Ta có: 33+ 43= ( 3 + 4 )( 32 - 3.4 + 42 ) = 7.13 = 91.

b) Ta có: ( x + 1 )( x2- x + 1 ) = x3+ 13 = x3 + 1.


Hằng đẳng thức a^3 - b^3 (a nón 3 trừ b nón 3)

(A - B^3 = A3 - 3A2B + 3AB2 - B3

Lập phương của một hiệu vày lập phương của biểu thức loại nhất trừ 3 chuyến tích của bình phương biểu thức loại nhất và biểu thức loại nhị nằm trong 3 chuyến tích biểu thức loại nhất và bình phương biểu thức loại nhị rồi trừ với lập phương của biểu thức loại nhị.

Ví dụ : 

a) Khai triển hằng đẳng thức (2x - 3y)3

b) Viết biểu thức 8 - 12x + 6x2 - x3 bên dưới dạng lập phương của một tổng.

Lời giải:

a) Khai triển hằng đẳng thức (2x - 3y)3 tao được:

(2x - 3y)3

= (2x)3 - 3.(2x)2(3y) + 3(2x).(3y)2 - (3y)3

= 8x3 - 36x2y + 54xy2 - 27y3

b) Viết biểu thức 8 - 12x + 6x2 - x3 bên dưới dạng lập phương của một tổng tao được:

8 - 12x + 6x2 - x3

= 23 - 3.22.x + 3.2.x2 - x3

= (2 - x)3

Hằng đẳng thức a^3 + b^3 + c^3

A3+B3 +C3  –  3ABC = (A + B + C)(A2 + B2 + C2 – AB – BC – CA)

Ví dụ: Chứng minh biểu thức a3+b3 +c3 – 3abc = (a + b + c)(a2 + b2 + c2 – ab – bc –ca).

Ta tiếp tục phân tách a3+b3 +c3  –  3abc (1) trở nên nhân tử, tao có:

(a+b)3 = a3 + 3a2b + 3ab2 +  b3  suy ra: 

a3 + b3 = (a+b)3 – 3ab(a+b) (áp dụng hằng đẳng thức)

Như vậy: (1) tương tự (a+b)3 – 3ab(a+b) + c3 – 3abc 

= (a+b)3 + c3 – (3ab(a+b) + 3abc)

= (a+b+c)(a2+2ab +b2– (a+b)c+c2) – 3ab(a+b+c) 

= (a+b+c)(a2+2ab+b2– (a+b)c+ c2– 3ab) 

= (a+b+c)( a2+2ab+b2– ac – bc+ c2 – 3ab) 

= (a+b+c)( a+b2 c2– ac – bc- ab) = vế cần. (điều cần bệnh minh)

→ Kết luận: a3+b3 +c3  –  3abc = (a + b + c)(a2 + b2 + c2 – ab – bc – ca)

Một số bài xích tập dượt minh hoạ (Có đáp án)

a 3 b 3

Bài tập dượt minh họa

Bài 1: Tính độ quý hiếm của biểu thức:

a) A = x3 - 3x2 + 3x + 2 bên trên x = 11

b) B = x3 - 9x2 + 27x - 27 bên trên x = 4

Lời giải:

a) Ta có:

A = x3 - 3x2 + 3x + 2

A = x3 - 3x2 + 3x -1 + 3

A = (x - 1)3 + 3

Thay x = 1 nhập biểu thức rời khỏi có:

A = (1 - 1)3 + 3

A = 03 + 3

A = 3

Vậy A = 3

b) Ta có:

B = x3 - 9x2 + 27x - 27

B = x3 - 3.x2.3 + 3.x.32 - 33

B = (x - 3)3

Thay x = 4 nhập biểu thức tao có:

B = (4 - 3)3 = 13 = 1

Vậy B = 1

a 3 b 3

Hằng đẳng thức xứng đáng nhớ

Bài 2: Tìm x biết

a) ( x - 3 )( x2+ 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.

b) ( x + 1 )3- ( x - 1 )3- 6( x - 1 )2 = - 10.

Lời giải:

a) gí dụng những hằng đẳng thức ( a - b )( a2+ ab + b2) = a3 - b3.

( a - b )( a + b ) = a2 - b2.

Khi ê tao sở hữu ( x - 3 )( x2 + 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.

⇔ x3 - 33 + x( 22 - x2 ) = 0 ⇔ x3 - 27 + x( 4 - x2 ) = 0

⇔ x3 - x3 + 4x - 27 = 0

⇔ 4x - 27 = 0 

Vậy x= 27/4

b) gí dụng hằng đẳng thức ( a - b )3= a3- 3a2b + 3ab2 - b3

( a + b )3 = a3 + 3a2b + 3ab2 + b3

( a - b )2 = a2 - 2ab + b2

Khi ê tao có: ( x + 1 )3 - ( x - 1 )3 - 6( x - 1 )2 = - 10.

⇔ ( x3 + 3x2 + 3x + 1 ) - ( x3 - 3x2 + 3x - 1 ) - 6( x2 - 2x + 1 ) = - 10

⇔ 6x2 + 2 - 6x2 + 12x - 6 = - 10

⇔ 12x = - 6 

Vậy x= -1/2

Hy vọng đấy là tài liệu có ích, hướng dẫn các chúng ta ôn tập bên trên lớp hoặc sử dụng tại nhà làm tài liệu tự học ôn luyện những bài xích tập dượt 7 hằng đẳng thức lưu niệm.